Leica FlexLine plus User Manual

Version 1.0
English

Purchase

Product identification

Symbols

Trademarks

Validity of this manual

Congratulations on the purchase of a FlexLine plus instrument.
This manual contains important safety directions as well as instructions for setting up the product and operating it. Refer to "13 Safety Directions" for further information. Read carefully through the User Manual before you switch on the product.

The model and serial number of your product are indicated on the type plate. Enter the model and serial number in your manual and always refer to this information when you need to contact your agency or Leica Geosystems authorised service workshop.

Model:
Serial No.:

The symbols used in this manual have the following meanings:

Type	Description
D DANGER	Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.
WARNING	Indicates a potentially hazardous situation or an unintended use which, if not avoided, could result in death or serious injury.
CAUTION	Indicates a potentially hazardous situation or an unintended use which, if not avoided, may result in minor or moderate injury.
NOTICE	Indicates a potentially hazardous situation or an unintended use which, if not avoided, may result in appreciable material, financial and environmental damage.
I	Important paragraphs which must be adhered to in practice as they enable the product to be used in a technically correct and efficient manner.

- Windows is a registered trademark of Microsoft Corporation.
- Bluetooth is a registered trademark of Bluetooth SIG, Inc.

All other trademarks are the property of their respective owners.

	Description
General	This manual applies to TS06 plus and TS09 plus instruments. Where there are differences between the various instru- ments they are clearly described.
Telescope	- Measuring with Prism mode: When measuring distances to a reflector with Electronic Distance Measurement (EDM) mode "Prism", the telescope uses a wide visible red laser beam, which emerges coaxially from the tele- scope's objective. - Measuring with Non-Prism modes: Instruments that are equipped with a reflectorless EDM additionally offer the EDM mode "Non-Prism". When meauring distances with this EDM mode, the telescope uses a narrow visible red laser beam, which emerges coaxially from the telescope's objective.

Do NOT remove the battery during operation of the instrument, or during the shutdown procedure.

This can result in a file system error and data loss!
Always switch off the instrument by pressing the On/Off key, and wait until the instrument has shutdown completely before removing the battery.
1 Description of the System 8
1.1 System Components 8
1.2 Container Contents 9
1.3 Instrument Components 10
2 User Interface 11
2.1 Keyboard 11
2.2 Screen 12
2.3 Status Icons 12
2.4 Softkeys 14
2.5 Operating Principles 14
2.6 Pointsearch 15
2.7 Graphic Symbols 16
3 Operation 17
3.1 Instrument Setup 17
3.2 Working with the Battery 19
3.3 Data Storage 20
3.4 Main Menu 21
3.5 Q-Survey Program 22
3.6 Distance Measurements - Guidelines for Correct Results 22
4 Settings 24
4.1 Work Settings 24
4.2 Regional Settings 25
4.3 Data Settings 28
4.4 Screen E Audio Settings 29
4.5 EDM Settings 31
4.6 Interface Settings 34
5 Programs - Getting Started 36
5.1 Overview 36
5.2 Starting a Program 37
5.3 Setting the Job 37
5.4 Station Setup 38
6 Programs 39
6.1 Common Fields 39
6.2 Station Setup 39
6.2.1 Starting Station Setup 39
6.2.2 Measuring the target points 42
6.2.3 Station Setup Results 43
6.3 Surveying 45
6.4 Stakeout 46
6.5 Reference Line 48
6.5.1 Overview 48
6.5.2 Defining the Base Line 48
6.5.3 Defining the Reference Line 49
6.5.4 Measure Line E Offset 50
6.5.5 Stakeout 51
6.5.6 Grid Stakeout 52
6.5.7 Line Segmentation 54
6.6 Reference Arc 56
6.6.1 Overview 56
6.6.2 Defining the Reference Arc 56
6.6.3 Measure Line \& Offset 57
6.6.4 Stakeout 58
6.7 Reference Plane 60
6.8 Tie Distance 61
6.9 Area \& DTM Volume 63
6.10 Remote Height 66
6.11 COGO 67
6.11.1 Starting COGO 67
6.11.2 Inverse and Traverse 67
6.11.3 Intersections 68
6.11.4 Offsets 69
6.11.5 Line - Extension 69
6.12 Road 2D 70
6.13 Road 3D 72
6.13.1 Starting Road 3D 72
6.13.2 Basic Terms 73
6.13.3 Creating or Uploading Alignment Files 77
6.13.4 Stake 78
6.13.5 Check 79
6.13.6 Stake Slope 80
6.13.7 Check Slope 83
6.14 Traverse 84
6.14.1 Overview 84
6.14.2 Starting and Configuring Traverse 85
6.14.3 Measuring Traverse 86
6.14.4 Moving ahead 88
6.14.5 Closing a Traverse 88
7 Favourites 92
7.1 Overview 92
7.2 Target Offset 93
7.2.1 Overview 93
7.2.2 Cylindrical Offset Subprogram 94
7.3 Hidden Point 96
7.4 Check Tie 97
7.5 EDM Tracking 97
7.6 Backsight Check 98
8 Coding 99
8.1 Coding 99
8.2 Quick Coding 100
9 Tools 101
9.1 Adjust 101
9.2 Startup Sequence 101
9.3 System Information 102
9.4 Licence Keys 104
9.5 Instrument Protection with PIN 105
9.6 Loading Software 106
10 Data Management 107
10.1 Manage 107
10.2 Exporting Data 108
10.3 Importing Data 111
10.4 Working with a USB Memory Stick 113
10.5 Working with Bluetooth 114
10.6 Working with Leica FlexOffice 115
11 Check \& Adjust 116
11.1 Overview 116
11.2 Preparation 116
11.3 Adjusting Line-of-Sight and Vertical Index Error 117
11.4 Adjusting the Compensator 119
11.5 Adjusting the Tilting Axis Error 120
11.6 Adjusting the Circular Level of the Instrument and Tribrach 121
11.7 Inspecting the Laser Plummet of the Instrument 122
11.8 Servicing the Tripod 122
12 Care and Transport 123
12.1 Care 123
12.2 Transport 123
12.3 Storage 123
12.4 Cleaning and Drying 124
13 Safety Directions 125
13.1 General 125
13.2 Definition of Use 125
13.3 Limits of Use 125
13.4 Responsibilities 126
13.5 Hazards of Use 126
13.6 Laser Classification 128
13.6.1 General 128
13.6.2 Distancer, Measurements with Reflectors 128
13.6.3 Distancer, Measurements without Reflectors (Non-Prism mode) 129
13.6.4 Electronic Guide Light EGL 130
13.6.5 Laser Plummet 130
13.7 Electromagnetic Compatibility EMC 131
13.8 FCC Statement, Applicable in U.S. 133
14 Technical Data 134
14.1 Angle Measurement 134
14.2 Distance Measurement with Reflectors 134
14.3 Distance Measurement without Reflectors (Non-Prism mode) 135
14.4 Distance Measurement Reflector ($>4.0 \mathrm{~km}$) 136
14.5 Conformity to National Regulations 136
14.5.1 Products without Communication side cover 136
14.5.2 Products with Communication side cover 137
14.6 General Technical Data of the Instrument 138
14.7 Scale Correction 141
14.8 Reduction Formulas 143
15 Software Licence Agreement 144
16 Glossary 145

Appendix A	Menu Tree	147
Appendix B	Directory Structure	149
Index		150

1.1

System Components

Main components

Component	Description
FlexLine plus instrument	An instrument for measuring, calculating and capturing data. Ideally suited for tasks from simple surveys to complex applications. Equipped with a FlexField plus firmware package to complete these tasks. The various lines have a range of accuracy classes and support different features. All lines can be connected with FlexOffice to view, exchange and manage data.
FlexField plus firmware	The firmware package installed on the instrument. Consists of a standard base operating system with optional additional features.
FlexOffice soft- ware	An office software consisting of a suite of standard and extended programs for the viewing, exchanging, managing and post processing of data.
Data transfer	Data can be always transferred between a FlexLine plus instrument and a computer via a data transfer cable. For instruments equipped with a Communication side cover data can also be transferred via USB memory stick, USB cable, or Bluetooth.

Container contents

 part 1 of 2
Container contents part 2 of 2

j) Adjustment tools
k) GFZ3 diagonal eyepiece*
l) GEB211/GEB212/GEB221/GEB222 batteries*
m) GKL211 battery charger*
n) GAD105 flat or mini prism adapter*
o) MS1 Leica industrial grade USB memory stick - for instruments with a Communication side cover
p) GEB212/GEB211/GEB221/GEB222 battery*
q) Tip for mini prism pole*
r) Counterweight for diagonal eyepiece*
s) Manuals
t) GLS115 mini prism pole*

* Optional

Instrument components part 1 of 2

a) Compartment for USB memory stick and USB cable ports
b) Bluetooth antenna
c) Optical sight
d) Detachable carrying handle with mounting screw
e) Electronic Guide Light (EGL)*
f) Objective with integrated Electronic Distance Measurement (EDM). Exit for EDM laser beam
g) Vertical drive
h) On/Off key
i) Trigger key
j) Horizontal drive
k) Second keyboard**

* Optional for TS06 plus
** Optional for TS06 plus/TS09 plus

Instrument compo-

 nents part 2 of 2
I) Focusing telescope image
m) Eyepiece; focusing graticule
n) Battery cover
o) Serial interface RS232
p) Foot screw
q) Display
r) Keyboard, model may vary depending on instrument
s) Stylus

Communicationside cover

a) Bluetooth antenna
b) Compartment lid
c) USB memory stick cap storage
d) USB host port
e) USB device port

User Interface

2.1

Keyboard

Keyboard

Color\&Touch keyboard

a) Fixed keys
b) Navigation key
c) ENTER key
d) ESC key
e) Function keys F1 to F4
f) Alphanumeric keypad
g) Stylus

Alphanumeric keyboard

Keys

Key BEW	CET	Description
良	Tab on screen	Page key. Displays the next screen when several screens are available.
Ond	${ }_{\text {® }}^{\star}$	FNC/Favourites key. Quick-access to measurement supporting functions.
		User key l. Programmable with a function from the Favourites menu.
		User key 2. Programmable with a function from the Favourites menu.
	0	Navigation key. Controls the focus bar within the screen and the entry bar within a field.
-	OK	ENTER key. Confirms an entry and continues to the next field. When this key is pressed for three seconds, the instrument turns off.
${ }^{\text {ma }}$	\bigcirc	ESC key. Quits a screen or edit mode without saving changes. Returns to next higher level.
(A)	Φ, ∞	Function keys that are assigned the variable functions displayed at the bottom of the screen.
		Alphanumeric keypad for entry of text and numerical values.

Key	Description
On／Off key．Switches the instrument on or off．	
	Trigger key．Quick key programmable with functions Meas or Dist if desired． The trigger key can be programmed in the Settings screen．Refer to＂4．1 Work Settings＂．

2.2

Screen

Screen

The instruments are available with Black\＆White or with Color\＆Touch display．
All screens shown in this manual are examples．It is possible that local firmware versions are different to the basic version．

Black\＆White screen：

ColorधTouch screen：

a）Status icons
b）Title of screen
c）Focus in screen．Active field
d）Fields
e）Softkeys
๔ Tap on an icon，field or tab to run a function．

2.3

Status Icons

Description

The icons provide status information related to basic instrument functions．Depending on the firmware version，different icons are displayed．

Icons

Icon BEW	CET	Description
昷	囟	Non－prism EDM mode for measuring to all targets．For C\＆T： Tapping the icon opens the EDM Settings screen．
θ	＊	Leica standard prism is selected．For CछT：Tapping the icon opens the EDM Settings screen．
8	（3）	Leica mini prism is selected．For CET：Tapping the icon opens the EDM Settings screen．
¢	（3）	Leica mini 0 prism is selected．For C\＆T：Tapping the icon opens the EDM Settings screen．
豆	x	Leica 360° prism is selected．For C\＆T：Tapping the icon opens the EDM Settings screen．

Icon		Description
BEW	CET	
	襄	Leica 360° mini prism is selected．For C\＆T：Tapping the icon opens the EDM Settings screen．
$\frac{G}{\text { whe }}$	悪	Leica 360° MPR122 prism is selected．For C\＆T：Tapping the icon opens the EDM Settings screen．
图	(2)	Leica reflector tape is selected．For C\＆T：Tapping the icons opens the EDM Settings screen．
212	（1）	User defined prism is selected．For C\＆T：Tapping the icons opens the EDM Settings screen．
－	W	Indicates EDM measurement activity．For C\＆T：Tapping the icons opens the EDM Settings screen．
－	－	indicates an active laser pointer．For CET：Tapping the icon opens the EDM Settings screen．
I	I	Indicates telescope position in face I．For C\＆T：Tapping the icon opens the Level \＆Plummet screen．
II	II	Indicates telescope position in face II．For C\＆T：Tapping the icon opens the Level \＆Plummet screen．
\square	III	Compensator is on．For C\＆T：Tapping the icon opens the Level \＆Plummet screen．
区	（8）	Compensator is off．For C\＆T：Tapping the icon opens the Level \＆Plummet screen．
\square	0	Compensator out of range．For C\＆T：Tapping the icon opens the Level \＆Plummet screen．
145	34．	Keypad is set to numeric mode．Displayed when an editable field is highlighted．For CET：Tapping the icon switches to alphanumeric mode．
［ BEC $^{\text {c }}$	BC	Keypad is set to alphanumeric mode．Displayed when an edit－ able field is highlighted．For C\＆T：Tapping the icon switches to numeric mode．
（1］）	12	RS232 communication port is selected．For C\＆T：Tapping the icon opens the Interface Settings screen．
0	（1）	Bluetooth communication port is selected．If there is a cross beside the icon，the Bluetooth communication port is selected，but the status is inactive．For CET：Tapping the icon opens the Interface Settings screen．
\leftrightarrow	$\bullet \bullet$	USB communication port is selected．For C\＆T：Tapping the icon opens the Interface Settings screen．
auto	랎	Communication is set to auto detect．For CET：Tapping the icon opens the Interface Settings screen．
\square	國	The battery symbol indicates the level of the remaining battery capacity， 100% full shown in the example．For C\＆T： Tapping the icon opens the Info screen．
！	4	Offset is active．
5	－	Indicates that horizontal angle is set to left side angle meas－ urement（anticlockwise）．

2.4 Softkeys

Description

Common softkey functions

2.5

Turn instrument on/off

Selection of language

Alphanumeric keypad

Softkeys are selected using the relevant F1 to F4 function key. This chapter describes the functionality of the common softkeys used by the system. The more specialised softkeys are described where they appear in the program chapters.

Key	Description
Cont	If entry screen: Confirms measured or entered values and continues the process. If message screen: Confirms message and continues with selected action or returns to the previous screen to reselect an option.
Back	To return to the last active screen.
Default	To reset all editable fields to their default values.
Dist	To start distance and angle measurements without saving the measured values.
EDM	To view and change EDM settings. Refer to "4.5 EDM Settings".
ENH	To open the manual coordinate entry screen.
Find	To search for an entered point.
List	To display the list of available points.
Meas	To start distance and angle measurements and save the measured values.
Quit	To exit the screen or program.
Store	To save the displayed values.
View	To display the coordinate and job details of the selected point.
$->$ ABC	To change the keypad operation to alphanumerical.
$->345$	To change the keypad operation to numerical.
\downarrow	To display the next softkey level.
\mathbf{T}	To return to the first softkey level.

Operating Principles

- To turn the instrument on or off, use the (d) On/Off key on the side cover of the instrument.
- Alternatively, the instrument can be turned off by pressing the /a key for three seconds.

After switching on the instrument the user is able to choose their preferred language. The language choice screen is only shown if multiple languages are loaded onto the instrument and Lang.Choice: On is set in the instrument settings. Refer to "4.2 Regional Settings".

The alphanumerical keypad is used to enter characters directly into editable fields.

- Numeric fields: Can only contain numerical values. By pressing a key of the keypad the number will be displayed.
- Alphanumeric fields: Can contain numbers and letters. By pressing a key of the keypad the first character written above that key will be displayed. By pressing several times you can toggle through the characters. For example: 1->S- >T- >U- >1>S....

Edit fields

ESC Deletes any change and restores the previous value.
Moves the cursor to the left
Moves the cursor to the right.
Inserts a character at the cursor position.
Deletes the character at the cursor position.

Special characters

Character	Description
*	Used as wildcards in search fields for point numbers or codes. Refer to "2.6 Pointsearch".
$+/-$	In the alphanumeric character set "+" and "-" are treated as normal alphanumeric characters with no mathematical function. Ler "+" / "-" only appear in front of an entry.

In this example selecting 2 on an alphanumeric keyboard would start the Survey program.

2.6

Description

Direct search

Wildcard search

The wildcard search is indicated by a "*". The asterisk is a place holder for any following sequence of characters. Wildcards should be used if the point number is not fully known, or to search for a batch of points.

Search

To search for matching points within the selected job.
 ENH=0
 To set all ENH coordinates for the point ID to 0 .

By entering an actual point number, for example 402, and pressing Search, all points within the selected job and with the corresponding point number are found.

Pointsearch			\bigcirc
General			
Job :			123
			402
Select job or enter point coordinates manually!			
Search	ENH=0	ENH	

Pointsearch is a function used by programs to find measured or fixed points in the memory storage.
It is possible to limit the point search to a particular job or to search the whole storage. The search procedure always finds fixed points before measured points that fulfil the same search criteria. If several points meet the search criteria, then the results are ordered according to the entry date. The instrument finds the most recent fixed point first.

In edit mode the position of the decimal place cannot be changed. The decimal place is skipped.

2.7

 Graphic Symbols

 Graphic Symbols}
Examples of point searches

Graphic symbols

* All points are found.

A All points with exactly the point number "A" are found.
A* All points starting with "A" are found, for example, A9, A15, ABCD, A2A.
*1 All points containing only one " 1 " are found, for example, $1, A 1, A B 1$.
A*1 All points starting with "A" and containing only one " 1 " are found, for example, A1, AB1, A51.

In some programs, a graphical display is shown. The graphical display

- provides a guide to find the point to be staked out.
- allows for a better overall understanding of how the data being used and measured relates to each other.

Element	Description
目	Point to be staked / known point
18	Instrument
\bar{T}	Current position of prism (measurement with Dist)
1/7	Forward/backwards distance to point
$\Leftrightarrow / \square$	Side distance to point
二/V	Height distance to point
1	The stakeout point is the same as the measured point. The difference between stakeout point and measured point is $\leq 0.03 \mathrm{~m}$.
	Circle around the stake out point, supporting the detail view, radius = 0.5 m
\pm	Fixpoint
X	Centre point of an arc or circle
\bigcirc	Measured point
\square	Black squares around the point symbol indicate the plane points.
${ }^{\circ}$	New point
\longrightarrow	Reference line/arc, straight, curve or spiral from start point to end point
- - - -	Extension of reference line/arc, straight, curve or spiral
- - -	Perpendicular distance to the reference line/arc, straight, curve or spiral
	Boundary of an area
-	Connection between last measured/selected point and first point of an area
	Boundary of breaklines
-	Breaklines of an area

Description

శ్త్ర

Tripod

శ్రొ
When setting up the tripod pay attention to ensuring a horizontal position of the tripod plate. Slight corrections of inclination can be made with the foot screws of the tribrach. Larger corrections must be done with the tripod legs.

Loosen the clamping screws on the tripod legs, pull out to the required length and tighten the clamps.
a) In order to guarantee a firm foothold sufficiently press the tripod legs into the ground.
b) When pressing the legs into the ground note that the force must be applied along the legs.

Careful handling of tripod.

- Check all screws and bolts for correct fit.
- During transport, always use the cover supplied.
- Use the tripod only for surveying tasks.

1. Extend the tripod legs to allow for a comfortable working posture. Position the tripod over the marked ground point, centring it as best as possible.
2. Fasten the tribrach and instrument onto the tripod.
3. Turn on the instrument, and, if tilt correction is set to $\mathbf{O n}$, the laser plummet will be activated automatically, and the Level \& Plummet screen appears. Otherwise, press the FNC/Favourites key from within any program and select Level \& Plummet.
4. Move the tripod legs (1) and use the tribrach footscrews (6) to centre the plummet (4) over the ground point.
5. Adjust the tripod legs (5) to level the circular level (7).
6. By using the electronic level, turn the tribrach footscrews (6) to precisely level the instrument. Refer to "Level up with the electronic level step-by-step".
7. Centre the instrument precisely over the ground point by shifting the tribrach on the tripod plate (2).
8. Repeat steps 6. and 7. until the required accuracy is achieved.

Level up with the electronic level step-by-step

The electronic level can be used to precisely level up the instrument using the footscrews of the tribrach.

1. Turn the instrument until it is parallel to two footscrews.
2. Centre the circular level approximately by turning the footscrews of the tribrach.
3. Turn on the instrument, and, if tilt correction is set to On, the laser plummet will be activated automatically, and the Level \& Plummet screen appears. Otherwise, press the FNC/Favourites key from within any program and select Level \& Plummet.
The bubble of the electronic level and the arrows for the rotating direction of the footscrews only appear if the instrument tilt is inside a certain levelling range.
4. Centre the electronic level of the first axis by turning the two footscrews. Arrows show the direction of rotation required. The first axis is levelled, when the bubble is exactly between the squared brackets [] of the single axis bubble tube.

ఒ When levelled correctly, checkmarks are displayed. For the Color\&Touch display only: If the instrument is not levelled to one axis, then the icons for the single axis bubble tube and the circular bubble are framed red, else they are black.
5. Centre the electronic level for the second axis by turning the last footscrew. An arrow shows the direction of rotation required.

ఒ When all three bubbles are centred, the instrument has been perfectly levelled up.

Change the intensity of the laser plummet

External influences and the surface conditions may require the adjustment of the intensity of the laser plummet.

6. Accept with Cont.

In the Level \& Plummet screen, adjust the intensity of the laser plummet using the navigation key.
The laser can be adjusted in 20% steps as required.

Position over pipes or holes

Under some circumstances the laser dot is not visible, for example over pipes. In this case, using a transparent plate enables the laser dot to be seen and then easily aligned to the centre of the pipe.

3.2

Working with the Battery

Charging / first-time use

- The battery must be charged prior to using it for the first time because it is delivered with an energy content as low as possible.
- For new batteries or batteries that have been stored for a long time (> three months), it is effectual to make only one charge/discharge cycle.
- The permissible temperature range for charging is between $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C} /+32^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$. For optimal charging we recommend charging the batteries at a low ambient temperature of $+10^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C} /+50^{\circ} \mathrm{F}$ to $+68^{\circ} \mathrm{F}$ if possible.
- It is normal for the battery to become warm during charging. Using the chargers recommended by Leica Geosystems, it is not possible to charge the battery if the temperature is too high.

Operation / discharging

- The batteries can be operated from $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$.
- Low operating temperatures reduce the capacity that can be drawn; very high operating temperatures reduce the service life of the battery.
- For Li-Ion batteries, we recommend carrying out a single discharging and charging cycle when the battery capacity indicated on the charger or on a Leica Geosystems product deviates significantly form the actual battery capacity available.

The polarity of the battery is displayed inside the battery housing.

3.3
 Data Storage

Description

An internal memory is included in all instruments. The FlexField plus firmware stores all data in jobs in a database in the internal memory. Data can then be transferred to a computer or other device for post processing via a LEMO cable connected to the serial interface RS232 port.
For instruments fitted with a Communication side cover, data can also be transferred from the internal memory to a computer or other device via:

- a USB memory stick inserted into the USB host port,
- a USB cable connected to the USB device port, or
- via a Bluetooth connection.

Refer to "10 Data Management" for further information on data management and data transfer.

Description

Main Menu

The Main Menu is the starting place for accessing all functionality of the instrument. It is displayed immediately after the Level \& Plummet screen, after switching on the instrument.

If desired, the instrument can be configured to start in a user-defined place after the Level/Plummet screen, instead of the Main Menu. Refer to "9.2 Startup Sequence".

Description of the Main Menu functions

Function	Description
Q	Quick Survey program to begin measuring immediately. Refer to "3.5 Q-Survey Program".
Q-Survey	To select and start programs. Refer to "6 Programs".
Programs	
R	To manage jobs, data, codelists, formats, system memory and USB memory stick files. Refer to "10 Data Management".
Manage	To export and import data. Refer to "10.2 Exporting Data".
Transfer	To change EDM configurations, communication parameters and general instrument settings. Refer to "4 Settings".
Settings	To access instrument-related tools such as check and adjust, personal startup settings, PIN code settings, licence keys, system information and firmware upload. Refer to "9 Tools".
Tools	

Description

Access

Q-Survey

After switching on and setting up correctly, the instrument is immediately ready for measuring.

Select $;$ 事 Q-Survey from the Main Menu.

\downarrow Station

To enter station data and set the station.
】 Set Hz
To set the orientation to a user defined horizontal direction.

$\downarrow \mathrm{Hz} \leftarrow / \mathrm{Hz}=$

To set the horizontal angle reading to the left (anticlockwise) or to the right (clockwise).
\downarrow Code
To find/enter codes. Refer to "8.1 Coding". Available on page $4 / 4$ or Code. Or, on any page, press the FNC/Favourites key and select Coding.

3.6 Distance Measurements - Guidelines for Correct Results

Description

Non-Prism measurements

- When a distance measurement is triggered, the EDM measures to the object which is in the beam path at that moment. If a temporary obstruction, for example a passing vehicle, heavy rain, fog or snow is between the instrument and the point to be measured, the EDM may measure to the obstruction.
- Be sure that the laser beam is not reflected by anything close to the line of sight, for example highly reflective objects.
- Avoid interrupting the measuring beam while taking Non-Prism measurements or measurements using reflective foils.
- Do not measure with two instruments to the same target simultaneously.

Prism measure-

 ments- Accurate measurements to prisms should be made in Prism-standard mode.
- Measurements to strongly reflecting targets such as traffic lights in Prism mode without a prism should be avoided. The measured distances may be wrong or inaccurate.
- When a distance measurement is triggered, the EDM measures to the object which is in the beam path at that moment. If for example people, cars, animals, or swaying branches cross the laser beam while a measurement is being taken, a fraction of the laser beam is reflected from these objects and may lead to incorrect distance values.
- Measurements to prisms are only critical if an object crosses the measuring beam at a distance of 0 to 30 m and the distance to be measured is more than 300 m .
- In practice, because the measuring time is very short, the user can always find a way of avoiding unwanted objects from interfering in the beam path.

1 WARNING

Red laser to prism

Red laser to reflector tape

Due to laser safety regulations and measuring accuracy, using the Long Range Reflectorless EDM is only allowed to prisms that are more than $1000 \mathrm{~m}(3300 \mathrm{ft}$) away.

- P-Long ($\mathbf{> 4 . 0} \mathbf{~ k m}$) mode enables distance measurements of over 4.0 km to standard prisms using the visible red laser beam.
- The visible red laser beam can also be used to measure to reflective foils. To guarantee the accuracy the red laser beam must be perpendicular to the reflector tape and it must be well adjusted.
- Make sure the additive constant belongs to the selected target (reflector).

Access

1. Select
2. Select

Settings from the Main Menu.
Work from the Settings Menu.

Work Settings

Tilt and horizontal corrections

Field	Description
Trigger Key1 Trigger Key2	Trigger Key 1 is the top end of the trigger key. Trigger Key 2 is the lower end of the trigger key.
USER Key 1 USER Key 2	Configures Ö́or ${ }^{\text {Ör }}$ with a function from the Favourites menu. Refer to "7 Favourites".
Tilt Corr.	Off Tilting compensation deactivated. On 2-axis compensation. Vertical angles refer to the plummet line and the horizontal directions are corrected by the standing axis tilt. For corrections depending on the $\mathbf{H z}$ Corr. setting, refer to the table "Tilt and horizontal corrections".
5	If the instrument is used on an unstable base, for example a shaking platform or ship, the compensator should be deactivated. This avoids the compensator drifting out of its measuring range and interrupting the measuring process by indicating an error.
Hz Corr.	On $\left.\begin{array}{ll}\text { Horizontal corrections are activated. For normal } \\ \text { operation the horizontal correction should remain } \\ \text { active. Each measured horizontal angle will be } \\ \text { corrected, depending on the vertical angle. }\end{array}\right\}$
Face I Def.	Sets the face I in relation to the position of the vertical drive.
	V-Left Sets face I to be when the vertical drive is on the left
	V-Right $\begin{aligned} & \text { Sets face I to be when the vertical drive is on the } \\ & \text { right of the instrument. }\end{aligned}$

Setting		Correction			
Tilt correc- tion	Horizontal correction	Incline Iongi- tudinal	Incline transversal	Horizontal collimation	Tilting axis
Off	On	No	No	Yes	Yes
On	On	Yes	Yes	Yes	Yes
Off	Off	No	No	No	No
On	Off	Yes	No	No	No

Access

Regional Settings

1. Select Settings from the Main Menu.
2. Select Regional from the Settings Menu.
3. Press to scroll through the screens of available settings.

Delete

To delete an inactive language. Available when the language is highlighted.

Field	Description	
Hz Increment	Right Left	Set horizontal angle to clockwise direction measurement. Set horizontal angle to counter-clockwise direction measurement. Counter-clockwise directions are displayed but are saved as clockwise directions.
V-Setting	Sets the vertic Zenith Horizon Slope [\%]	angle. Zenith $=0^{\circ}$; Horizon $=90^{\circ}$. Zenith $=90^{\circ}$; Horizon $=0^{\circ}$. Vertical angles are positive above the horizon and negative below it. $45^{\circ}=100 \%$; Horizon $=0^{\circ}$. Vertical angles are expressed in \% with positive above the horizon and negative below it. The \% value increases rapidly. 300\%. .--\% appears on the display above

\begin{tabular}{|c|c|}
\hline Field \& Description \\
\hline V After DIST \& \begin{tabular}{l}
Sets if the vertical angle value recorded is the value that is displayed when Dist or when Store is pressed. The vertical angle field in a measurement screen always shows the running angle, regardless of this setting. \\
Hold \\
The vertical angle value that is recorded is the value that was in the vertical angle field at the time Dist was pressed. \\
Running \\
The vertical angle value that is recorded is the value in the vertical angle field at the time Store is pressed. \\
This setting is not applicable for the program Tie Distance or the favourites Hidden Pointand Height Transfer. For these, the vertical angle is always running and the value recorded is the value when Store is pressed.
\end{tabular} \\
\hline Language \& \begin{tabular}{l}
Sets the chosen language. Several languages can be uploaded onto the instrument. The current loaded language(s) are shown. \\
A selected language can be deleted by pressing Delete. This function is available if more than one language is installed, and the selected language is not the chosen operating language.
\end{tabular} \\
\hline Lang.Choice \& \begin{tabular}{l}
If multiple languages are loaded, a screen to choose the language can be shown directly after switching on the instrument. \\
On \\
The language screen is shown as the startup screen. \\
Off \\
The language screen is not shown as the startup screen.
\end{tabular} \\
\hline Angle Unit

cosem \&

\hline Min. Reading \& Sets the number of decimal places shown for all angular fields. This is for data display and does not apply to data export or storage.

\hline Dist. Unit \& Sets the units shown for all distance and coordinate related fields.

\hline
\end{tabular}

Field	Description
Dist.Decimal	Sets the number of decimal places shown for all distance fields. This is for data display and does not apply to data export or storage. 3 Displays distance with three decimals. 4 Displays distance with four decimals.
Temp. Unit	Sets the units shown for all temperature fields. ${ }^{\circ} \mathrm{C}$ Degree Celsius. ${ }^{\circ} \mathrm{F} \quad$ Degree Fahrenheit.
Press.Unit	Sets the units shown for all pressure fields.
Grade Unit	Sets how the slope gradient is calculated. h:v Horizontal : Vertical, for example $5: 1$. v:h Vertical : Horizontal, for example 1:5. $\%$ $(\mathrm{v} / \mathrm{h} \times \mathrm{l00})$, for example 20%.
Time (24h)	The current time.
Date	Shows an example of the selected date format.
Format	dd.mm.yyyy, How the date is shown in all date-related fields. mm.dd.yyyy or yyy.mm.dd

Access

1. Select Settings from the Main Menu.
2. Select Data from the Settings Menu.
3. Press to scroll through the screens of available settings.

Data Settings

Field	Description
Double PtID	Sets if multiple points are able to be recorded with the same point ID in the same job.
Sort Type	Time Lists are sorted by time of entry. PtID Lists are sorted by Point IDs.
Sort Order	Descending Lists are ordered in descending order of sort type. Ascending Lists are ordered in ascending order of sort type.
Code Record	Sets if the codeblock is saved before or after the measurement. Refer to " 8 Coding".
Code	Sets if the code will be used for one, or many, measurements. Reset after Rec The set code is cleared from the measurement screen after Meas or Store is selected. Permanent The set code remains in the measurement screen until manually deleted.
Data Output	Sets the location for data storage. Internal All data is recorded in the internal memory. Memory Interface Data is recorded via the serial interface, the USB device port or Bluetooth, depending on the port selected in the Interface Settings screen. This Data Output setting is only required if an external storage device is connected and measurements are started at the instrument with Dist/Store or Meas. This setting is not required if the instrument is totally controlled by a datalogger.
GSI-Format	Sets the GSI output format.
GSI-Mask	Sets the GSI output mask.

Access

Screen \& Audio Settings

1. Select Settings from the Main Menu.
2. Select Screen... from the Settings Menu.
3. Press 貫 to scroll through the screens of available settings.

Field	Description
Display III.	Off to 100\% Sets the display illumination in 20\% steps.
Keyb. III.	$\begin{array}{ll}\text { Available for Color\&Touch display only. } \\ \text { On } & \text { The keyboard illumination is activated. } \\ \text { Off } & \text { The keyboard illumination is deactivated. }\end{array}$
Reticle III.	Off to 100\% Sets the reticle illumination in 10\% steps.
Touch Screen	Available for Color\&Touch display only. On The touch screen is activated. Off The touch screen is deactivated. Press Calib. to calibrate the touch screen. Follow the instructions on the screen
Displ.Heater	Available for Black\&White display only. The display heater is automatically activated when the display illumination is on and the instrument temperature is $\leq 5^{\circ} \mathrm{C}$.
Contrast	0% to 100% Available for Black\&White display only. Sets the display contrast in 10% steps.
Auto-Off	Enable The instrument switches off after 20 minutes without any activity, for example no key pressed or vertical and horizontal angle deviation is $\leq \pm 3 "$. Disable Automatic switch-off is deactivated. Battery discharges quicker.
Screensaver	after $\mathbf{1 ~ m i n}$, The screensaver is activated and starts after the after $\mathbf{2 ~ m i n}$, after $\mathbf{5 ~ m i n}$, selected time. after $\mathbf{1 0} \mathbf{~ m i n}$ Off The screensaver is deactivated.
Beep	The beep is an acoustic signal after each key stroke.

Field	Description	
Sector Beep	On Off	Sector beep sounds at right angles $\left(0^{\circ}, 90^{\circ}, 180^{\circ}\right.$, 270° or $0,100,200,300$ gon). 1)No beep. 2)Fast beep; from 95.0 to 99.5 gon and 105.0 to 100.5 gon. 3)Permanent beep; from 99.5 to 99.995 gon and from 100.5 to 1800100.005 gon. Sector Beep is deactivated.
Stakeout Beep	On	The instrument beeps when the distance from the current position to the point to be staked is $\leq 0.5 \mathrm{~m}$. The closer the prism is to the point to be staked the faster the beeps will be. Beep is deactivated.

Description

Access

EDM Settings

The settings on this screen define the active EDM, Electronic Distance Measurement. Different settings for measurements are available with Non-Prism (NP) and Prism (P) EDM modes.

1. Select Settings from the Main Menu.
2. Select Q $_{\text {© }}^{\text {E }}$ EDM from the Settings Menu.

Atmos
To enter atmospheric data ppm. Ind.PPM

To enter an individual ppm value.

\downarrow Scale

To enter projection scale details.
\downarrow Signal
To view EDM Signal reflection value. \downarrow Freq.

To view the EDM frequency.

Field	Description
EDM Mode	P-Precise+ Fine measuring mode for highest precision measure- ments with prisms (1.5 $\mathrm{mm}+2 \mathrm{ppm})$. P-Precise \& Quick measuring mode with prisms, with higher meas- Fast uring speed and high accuracy $(2 \mathrm{~mm}+2 \mathrm{ppm})$.
Prism Type	

Field	Description
Leica Const.	This field displays the Leica prism constant for the selected Prism Type. Where Prism Type is User $\mathbf{1}$ or User 2 this field becomes editable to set a user defined constant. Input can only be made in mm. Limit value: -999.9 mm to +999.9 mm .
Abs. Const.	This field displays the absolute prism constant for the selected Prism Type. Where Prism Type is User 1 or User 2 this field becomes editable to set a user defined constant. Input can only be made in mm. Limit value: -999.9 mm to +999.9 mm .
Laser-Point	Off Visible laser beam is deactivated. On Visible laser beam for visualising the target point is acti- vated.
Guide Light	Off Guide Light is deactivated. On Guide Light is activated. The person at the prism can be guided by the flashing lights directly to the line of sight. The light points are visible up to a distance of 150 meters. This is useful when staking out points. Working range: 5 m to $150 \mathrm{~m}(15 \mathrm{ft}$ to 500 ft$)$. Positioning accuracy: 5 cm at $100 \mathrm{~m}\left(1.97{ }^{\prime}\right.$ at 330 ft$)$.

EDM Settings - Enter Atmospheric Data

EDM Settings - Enter Projection Scale

This screen enables the entry of atmospheric parameters. Distance measurement is influenced directly by the atmospheric conditions of the air in which the measurements are taken. In order to take these influences into consideration distance measurements are corrected using atmospheric correction parameters.
The refraction correction is taken into account in the calculation of the height differences and the horizontal distance. Refer to "14.7 Scale Correction" for the application of the values entered in this screen.
When PPM=0 is selected, the Leica standard atmosphere of 1013.25 mbar, $12^{\circ} \mathrm{C}$, and 60% relative humidity is applied.

Abstract

This screen enables entry of the scale of projection. Coordinates are corrected with the PPM parameter. Refer to "14.7 Scale Correction" for the application of the values entered on this screen.

EDM Settings - Enter Individual PPM

EDM Settings - EDM Signal Reflection

ppm handling

This screen enables the entry of individual scaling factors. Coordinates and distance measurements are corrected with the PPM parameter. Refer to "14.7 Scale Correction" for the application of the values entered on this screen.

This screen tests the EDM signal strength (reflection strength) in steps of 1\%. Enables optimal aiming at distant, barely visible, targets. A percentage bar and a beeping sound, indicate the reflection strength. The faster the beep the stronger the reflection.

General handling

Handling of	Geom.ppm	Atmos. ppm	Indiv. ppm
Slope distance	Not applied	Applied	Applied
Horizontal distance	Not applied	Applied	Applied
Coordinates	Applied	Applied	Applied

Exceptions

- Program Stakeout

Geometric reduction values are applied to calculate and display the horizontal distance difference so that the position of points to be staked is found correctly.

- LandXML Data

To import and use the measurements into LGO, the distances recorded in LandXML differ from the distances on the instrument.

Handling of	Geom. ppm	Atmos. ppm	Indiv. ppm	ppm tag
Slope distance	Not applied	Applied	Not applied	Available
Horizontal distance	Applied	Applied	Applied	Unavailable
Coordinates	Applied	Applied	Applied	Unavailable

4.6

Description

Access

Interface Settings

For data transfer the communication parameters of the instrument must be set.

1. Select Settings from the Main Menu.
2. Select Interface from the Settings Menu.

BT-PIN

To set a PIN code for the Bluetooth connection.
This softkey is only available for instruments with a Communication side cover. The default Bluetooth PIN is '0000'.

Default

To reset the fields to the default Leica standard settings. Available for RS232.

Field	Description	
Port :	Instrument port. If a Communication side cover is fitted the options are selectable. If there is no Communication side cover the value is set to RS232 and is uneditable.	
	RS232	Communication is via the serial interface.
	USB	Communication is via the USB host port.
	Bluetooth	Communication is via Bluetooth.
	Automatically	Communication is set to auto detect.
Bluetooth:	Active	Bluetooth sensor is activated.
	Inactive	Bluetooth sensor is deactivated.

The following fields are active only when Port : RS232 is set.

Field	Description
Baud rate:	Speed of data transfer from receiver to device in bits per second. 1'200, 2'400, 4'800, 9'600, 14'400, 19'200, 38'400, 57'600, 115'200, Topcon, Sokkia
Data bits:	Number of bits in a block of digital data. $\mathbf{7}$ Data transfer is realised with 7 databits. $\mathbf{8}$ Data transfer is realised with 8 databits.
Parity :	Even Even parity. Available if data bit is set to 7. Odd Odd parity. Available if data bit is set to 7. None No parity. Available if data bit is set to 8.
Endmark :	CR/LF The terminator is a carriage return followed by a line feed. CR The terminator is a carriage return.
Stop bits: 1	Number of bits at the end of a block of digital data.
Acknowlge:	On Acknowledgement expected from other device after data transfer received. An error message will display if no acknowledgement is returned. Off No acknowledgement expected after data transfer.

Leica standard settings

Interface plug connections

When Default is selected the communication parameters are reset to the default Leica standard settings:

- 115200 Baud, 8 Databit, No Parity, CR/LF Endmark, 1 Stopbit.

a) External battery
b) Not connected / inactive
c) GND
d) Data reception (TH_RXD)
e) Data transfer (TH_TXD)

5.1

Overview

Description

雨
Only softkeys unique to the programs are explained in the program chapters. Refer to "2.4 Softkeys" for descriptions of the common softkeys.

5.2

Starting a Program

Access

1. Select Programs from the Main Menu.
2. Press 署 to move through the screens of available programs.
3. Press the number of the program (for Black\&White display) or tab on an icon (for Color\&Touch display) to select the specified program in the Programs Menu.

Pre-settings

 screensPre-settings for Survey is shown as an example. Any additional settings for particular programs are explained within the chapters for those programs.

Survey 15		
Config.		
[-] F1	Set Job	(1)
[*] F2	Station Setup	(2)
F4	Start	(4)
F1	F2	F4

[•] = Setting has been made.
] = Setting has not been made.

F1-F4
To select menu item.

Field	Description
F1 Set Job	To define the job where data will be saved. Refer to "5.3 Setting the Job".
F2 Station Setup	To determine the station coordinates and station orientation. Refer to "5.4 Station Setup".
F4 Start	Starts the selected program.

5.3

Setting the Job

Description

Access

Select Job

All data is saved in Jobs, like file directories. Jobs contain measurement data of different types, for example measurements, codes, fixed points, or stations. Jobs are individually manageable and can be exported, edited or deleted separately.

Select F1 Set Job in Config. screen.

Field	Description
Job	Name of an existing job to be used.
Operator	Name of operator, if entered.
Date	Date the selected job was created.
Time	Time the selected job was created.

Next step

- Either, press Cont to continue with the selected job.
- Or, press New to open the Enter Job Data screen and create a new job.

Recorded data Once a job is set up, all subsequent recorded data will be stored in this job.
If no job was defined and a program was started, or if in Q-Survey and a measurement was recorded, then the system automatically creates a new job and names it "Default".

Next step Press Cont to confirm the job and return to the Config. screen.

5.4
 Station Setup

Description

Station orientation calculation

$$
\begin{array}{ll}
\text { P0 } & \text { Instrument station } \\
\text { Known coordinates } \\
\text { P1 } & \text { Target point } \\
\text { P2 } & \text { Target point } \\
\text { P3 } & \text { Target point } \\
\text { Calculations } \\
\text { Hzl } & \text { Station orientation }
\end{array}
$$

Access

5

Select F2 Station Setup in Config. screen.
Next step
The Station Setup program begins. Refer to "6.2 Station Setup" for information on the Station Setup process.

If no station was set and a program was started, then the last station is set as the current station and the current horizontal direction is set as the orientation.

Description of fields

6.2

6.2.1

Station Setup

Starting Station Setup

Description

Station Setup is a program used when setting up a station, to determine the station coordinates and station orientation. A maximum number of 10 known points can be used to determine the position and orientation.

PO Instrument station
P1 Known point
P2 Known point
P3 Known point

The following setup methods are available:

Setup method	Description			
Orientation with Angle	The station is known. Aim at a target to set the orientation.			
Orientation with Coordinates	The station and target coordinates are known. Aim at a target to set the orientation.			
Height Transfer	The station is known, a new station height must be computed. Measure to one or more known targets to compute new height for the station.			
Resection	The station is unknown. Measure to two or more target points to compute station coordinates and orientation. Scale setting is configurable.			
Helmert Resection	The station is unknown. Measure to two or more target points to compute station coordinates and orientation. The measured angles and distances are adjusted, based on coordinates of a local and global system. A 2D Helmert transformation is used, with four shift x, shift y, rotation and scale) or three (shift x, shift y, rotation) parameters, depending on the scale setting in the configuration. Points can be defined as 1D, 2D or 3D.			
Local Resection	The station is unknown. Measure distances to two points: - To the origin (E = 0, N = 0, H = 0) of the coor- dinate system			
• To a point the North or East direction of the				
coordinate system		$	$	Scale and standard deviation are not calculated.
:---				

Each setup method requires different input data and a different number of target points.

Access

1. Select Programs from the Main Menu.
2. Select $\frac{1 / \pi}{\pi}$ Station Setup from the Programs Menu.
3. Select a job. Refer to "5.3 Setting the Job".
4. Select F2 Settings:

- Set the standard deviation limits for the position, height, Hz orientation, and the Face I-II difference. For Local Resection, define the positive North or positive East axis. For Resection Helmert, set the distance weighting that is used in the calculation of the station height in the Resection.
Set Calc.new Scale: Yes to calculate the scale for the setup methods Resection and Resection Helmert. The scale can then be set at the end of the Resection calculation. Measured distances are always reduced with the scale set on the instrument. To get a correct result from the scale calculation in Resection, the Scale PPM in the EDM Settings screen must be set to 0 .
- Press Cont to save the limits and return to the Stn.Setup screen.

5. Select F4 Start to begin the program.

Enter Station Data \| 0			
Data Method Station: hi			
	Ori. with Coord. (4IIDefault1.400 m		
Find	List	ENH	

1. Select the desired setup method.
2. Enter the station number or press Find or List to select an existing point. If the entered station number can not be found in the current job, then the Point Search screen appears. Select a different job to search or press ENH to enter the coordinates manually. ENH is only available for the methods Ori. with Angle, Ori. with Coord. and H -Trans.
3. For all methods except Ori. with Angle and Local Resection, press Cont to continue to the Enter Target Point screen.
For the Ori. with Angle method, Cont continues to the Manual Angle Setting screen. Refer to "6.2.2 Measuring the target points", "Sight target point". For the Local Resection method, Cont continues to the Meas. Pt1: Origin (0/0/0) screen. The first point measured is the origin of the coordinate system. The second point measured is, depending on the setting, either the North or East direction of the coordinate system.
4. Enter Target Point: Enter the PtID of the target. Press Cont to search for the point in the current job. Select the desired point or enter new coordinates and continue to the Sight target point! screen. Refer to "6.2.2 Measuring the target points", "Sight target point".

Computation procedure

Access

Station Setup Result

The computation of the station position is done via the Method selected in Enter Station Data.
If more than the minimum required measurements are performed, the procedure uses a least squares adjustment to determine the 3D position and averages orientation and height measurements.

- The original averaged face I and face II measurements are used for the computation process.
- All measurements are treated with the same accuracy, whether these are measured in single or dual face.
- Easting and Northing are determined by the least squares method, which includes standard deviation and improvements for horizontal direction and horizontal distances.
- The final height (\mathbf{H}) is computed from averaged height differences based on the original measurements. For the methods Ori. with Coord. and \mathbf{H}-Trans the height can be selected from old, average and new.
- The horizontal direction is computed with the original averaged face I and face II measurements and the final computed plan position.

Press F4 Compute in the Station Setup Result screen.
This screen displays calculated station coordinates. The final computed results depend on the Method selected in Enter Station Data.
Standard deviations and residuals for accuracy assessments are provided.

Add Pt

To return to the Enter Target Point screen to enter the next point.
Resid.
To display residuals and to define the use of points as 1D, 2D or 3D. Refer to "Target Residuals".

Std.Dev

To display the standard deviation of the station coordinates and orientation.

Set

To set the station coordinates and/or orientation.

If the instrument height was set to 0.000 in the setup screen, then the station height refers to the height of the tilting axis.

Description of fields

Field	Description
Station	Current station ID.
hi	Current instrument height.
East	Calculated Easting coordinate of the station.
North	Calculated Northing coordinate of the station.
Height	Calculated Height coordinate of the station.
$\mathbf{H z}$	Current Hz angle with the new orientation.
$\Delta \underline{\underline{U}}$	Available for Method: \mathbf{H}-Trans or Ori. with Coord. with only 1 target point. Difference between the calculated and measured horizontal distance from the station to the design target.

Field	Description
Scale	Available for Method: Resection and Method: Res.Helm.. The calcu- lated scale, if available.
Apply Scale	Yes or No. Select Yes to use the calculated scale as the system PPM scale. This overwrites any PPM scale previously set in the EDM Settings screens. Select No to keep the existing PPM value in the system and not apply the calculated scale.

Target Residuals

Messages

Next step

雨

The Target Residuals screen displays the computed residuals for the horizontal and vertical distances and the horizontal direction. Residual = Calculated value - Measured value.
Use indicates if and how a target point is used in the station calculation. Choices are 3D, 2D, 1D and Off.
Description of fields

Field	Description
3D	Easting, Northing and Height coordinates are used for the calculation.
2D	Easting and Northing coordinates are used for the calculation.
1D	Only the height of the point is used for the calculation.
Off	The point is not used for the calculation.

The following are important messages or warnings that may appear.

Messages	Description
Selected point has invalid data! Check data and try again!	This message occurs if the selected target point has no Easting or Northing coordinate.
Max. 10 points supported!	10 points have already been measured and another point is selected. The system supports a maximum of 10 points.
No position computeddue to bad data!	The measurements may not allow final station coordinates (Eastings, Northings) to be computed.
No height computed due to bad data!	Either the target height is invalid or insufficient measure- ments are available to compute a final station height.
Face IIII mismatch!	This error occurs if a point was measured in one face and the measurement in the other face differs by more than the specified accuracy limit for the horizontal or vertical angle.
No data meas- ured!Measure point again!	There is insufficient data measured to be able to compute a position or height. Either there are not enough points used or no distance measured.

Press Set to set the station coordinates and/or orientation and return to the Programs Menu.

- If a target point is measured several times in the same face, only the last valid measurement is used for computation.
- For Method: Resection:
- The prism used for face I and face II measurements must be the same.
- If different codes for face I and II are used, then the code of face I is used. If only face II is measured with a code, then the code of face II is assigned to the point.
- XML output does not allow a change of the ppm value during Stn. Setup measurements.
- If the scale is calculated, then the standard deviation of the position with two targets is 0.0000 . With flexible scale, the resection is fitted perfectly into the geometry without redundancy. Therefore the standard deviation is 0.000 .

6.3

Surveying

Description

Access

Survey

Survey is a program used for the measurement of an unlimited number of points. It is comparable to Q-Survey from the Main Menu, but includes pre-settings for the job, station and orientation prior to beginning a survey.

1. Select Programs from the Main Menu.
2. Select \ddagger Survey from the Programs Menu.
3. Complete program pre-settings. Refer to " 5 Programs - Getting Started".
! Q-Code
To activate quick coding. Refer to "8.2
Quick Coding".
\downarrow IndivPt
To switch between individual and current point numbers.
\downarrow Manage
To view measurement data.

Description

Stakeout modes

Stakeout is a program used to place marks in the field at predetermined points. These predetermined points are the points to be staked. The points to be staked may already exist in a job on the instrument, or be manually entered.
The program can continuously display differences, between current position and desired stake out position.

Points can be staked using different modes: Polar mode, Orthogonal to station mode and Cartesian mode.
Polar Stakeout mode

Orthogonal to Station Stakeout mode

PO Instrument station
P1 Current position
P2 Point to be staked
d1- Δ Length: Difference in longitudinal distance
d2+ Δ Trav.: Difference in perpendicular distance
d3+ Δ Height: Difference in height

Cartesian Stakeout mode

PO Instrument station
P1 Current position
P2 Point to be staked
a Δ East: Difference in Easting coordinate
b Δ North: Difference in Northing coordinate
c Δ Height: Difference in height

Access

1. Select Programs from the Main Menu.
2. Select $\boldsymbol{i}^{\text {S }}$ Stakeout from the Programs Menu.
3. Complete program pre-settings. Refer to " 5 Programs - Getting Started".

Field	Description	
Pre-ISuffix		Only used for the Stakeout program.
	Prefix	Adds the character entered for Identifier in front of the original point number of the point to be staked.
	Suffix	Adds the character entered for Identifier at the end of the original point number of the point to be staked.
	Off	The staked point is stored with the same point number as the point to be staked.
Identifier	Only used for the Stakeout program. The identifier can be up to four characters and is added at the start, or end, of a point number of a point to be staked.	
Stakeout Beep	On	The instrument beeps when the distance from the current position to the point to be staked is $\leq 0.5 \mathrm{~m}$. The closer the prism is to the point to be staked the faster the beeps will be.
	Off	Beep is deactivated.

Stakeout

\downarrow B\&Dist

To enter the direction and horizontal distance to a stake out point.

】 Manual

To manually enter coordinates of a point.

\downarrow Survey

To switch to the Survey program. Press ESC to return to the Stakeout screen..

Refer to "2.7 Graphic Symbols" for a description of the graphic elements.

Field	Description
Find	Value for Point ID search. After entry, the firmware searches for matching points, and displays these in PtID: If a matching point doesn't exist the pointsearch screen opens.
Pt TypeIID:	Displays the type of point selected. - Fixpt., or - Meas.
$\Delta \mathrm{Hz}$	Angle offset: Positive if stake out point is to the right of the measured point.
$\Delta \underline{L}$	Horizontal offset: Positive if stake out point is further away than the measured point.
Δ -	Height offset: Positive if stake out point is higher than the measured point.
$\Delta \mathrm{L}$	Longitudinal offset: Positive if stake out point is further away than the measured point.
$\Delta \mathrm{T}$	Perpendicular offset: Positive if stake out point is to the right of the measured point.
$\Delta \mathrm{H}$	Height offset: Positive if stake out point is higher than the measured point.
$\Delta \mathrm{E}$	Easting offset: Positive if stake out point is to the right of the measured point.
ΔN	Northing offset: Positive if stake out point is further away than the measured point

6.5
 Reference Line

6.5.1

Overview

Description

Access

Next step
Define the base line for the reference line.

6.5 .2
 Defining the Base Line

Description

A reference line can be defined by referencing a known base line. The reference line can be offset either longitudinally, in parallel or vertically to the base line, or be rotated around the first base point as required. Furthermore the reference height can be selected as the first point, second point or interpolated along the reference line.

Define the base line
The base line is fixed by two base points. All points can be either measured, manually entered, or selected from the memory.

Define the base line by measuring or selecting the start and end points of the line.

Next step

After defining the base line the Reference Line - Info screen will appear for defining the reference line.

Description

Access

The base line can be offset from, either longitudinally, in parallel or vertically, or be rotated around the first base point. This new line created from the offsets is called the reference line. All measured data refers to the reference line.

PO Instrument station
Pl Start point
P2 End point
dl Base line
d2 Reference line
P1 Base point
P2 Base point
a Base line
dl Parallel offset
d2 Longitudinal offset
P3 Reference point
r+ Rotation parameter
b Reference line

Reference Line - Info

Grid

To stake out a grid relative to the reference line.
Meas Pt
To measure Line \& Offset.
Stake
To stake out points orthogonal to the reference line.

- NewBL

To define a new base line.
\downarrow Shift=0
To reset all offset values to 0 .
\downarrow Segment
To subdivide a reference line into a definable number of segments and stake out the new points on the reference line.

| Field | Description |
| :--- | :--- | :--- |
| Length | Length of the base line. |
| Ref. Height | Point 1 \quadHeight differences are computed relative to the height
 of the first reference point.
 Height differences are computed relative to the height
 of the second reference point. |
| Offset | No Height
 Interpolated
 Height differences are computed along the reference
 line.
 Height differences are not computed or shown.
 Available on page 2/2 for Black\&White display or on page Shifts for
 Color\&Touch display.
 Positive values are to the right of the base line. |

Field	Description
Line	Longitudinal offset of the start point, reference point (P3), of the refer- ence line in the direction of base point 2. Available on page 2/2 for BlackEWhite display or on page Shifts for Color\&Touch display. Positive values are towards base point 2.
Height	Height offset of the reference line to the selected reference height. Available on page 2/2 for BlackEWhite display or on page Shifts for Color\&Touch display. Positive values are higher than the selected reference height.
Rotate	Rotation of the reference line clockwise around the reference point (P3). Available on page 2/2 for BlackEWhite display or on page Shifts for Color\&Touch display.

Next step

Select a softkey option, Meas Pt, Stake, Grid or \downarrow Segment, to proceed to a subprogram.

6.5.4

Description

Example of height difference relative to first reference point

Access

Measure line \mathcal{E} offset

Measure Line \& Offset

The Measure Line \& Offset subprogram calculates from measurements or coordinates, longitudinal offsets, parallel offsets and height differences of the target point relative to the reference line.

PO Instrument station
P1 Start point
P2 End point
P3 Measured point
P4 Reference point
d1 Δ Offset
d2 Δ Line

P1 Start point
P2 Target point
P3 Target point
a Reference height
dl Height difference between start point and the reference height
d2 Height difference between P2 and the reference height
d3 Height difference between P3 and the reference height

Press Meas in the Reference Line - Info screen.

Field	Description
$\boldsymbol{\Delta \mathbf { L }}$	Calculated distance longitudinal to the reference line.
$\boldsymbol{\Delta \mathbf { O }}$	Calculated distance perpendicular from the reference line.
$\boldsymbol{\Delta H}$	Calculated height difference relative to the defined reference height.

Next step

- Either, press Meas to measure and record.
- Or, press \downarrow Back to return to the Reference Line - Info screen.

Description

Access

Orthogonal stakeout

Reference Line Stakeout

The stakeout subprogram calculates the difference between a measured point and the calculated point. The orthogonal $(\mathbf{\Delta L}, \mathbf{\Delta O}, \boldsymbol{\Delta H})$ and polar $(\Delta \mathbf{H z}, \Delta \underline{\boldsymbol{L}}, \Delta \boldsymbol{\Delta})$ differences are displayed.
Example orthogonal stakeout

PO Instrument station
P1 Start point
P2 End point
P3 Stake out point
P4 Measured point
a Δ Parallel offset
b Δ Longitudinal offset

Press Stake from the Reference Line - Info screen.
Enter the stake out elements for the target points to be staked out relative to the reference line.

Field	Description
Line	Longitudinal offset: Positive if stake out point is further away from the reference line.
Offs	Perpendicular offset: Positive if stake out point is to the right of the refer- ence line.
Height	Height offset: Positive if stake out point is higher than the reference line.

The signs for the distance and angle differences are correction values (required minus actual). The arrows indicate the direction to move to get to the stake out point.
To allow a better visibility, for example if the line is very long and the target close to the line, the scale for x and y can be different in the graphic. If the instrument is far off the line, the instrument in the graphic is placed in the corner and marked red/grey.

Next Pt

To add the next point to be staked out.

Field	Description
$\boldsymbol{\Delta H z}$	Horizontal direction from the measured point to the stake out point. Posi- tive if the telescope must be turned clockwise to the stake out point.
$\Delta \boldsymbol{U}$	Horizontal distance from the measured point to the stake out point. Posi- tive if the stake out point is further away than the measured point.
$\Delta \boldsymbol{\Delta} \boldsymbol{l}$Height difference from the measured point to the stake out point. Positive if the stake out point is higher than the measured point.	

Next step

- Either, press Meas to measure and record.
- Or, press \downarrow Back to return to the Reference Line - Info screen.

Description

Access

Grid definition

The Grid subprogram calculates and displays the stake out elements for the points on the grid, orthogonal $(\mathbf{L}, \mathbf{\Delta} \mathbf{O}, \Delta \mathbf{H})$ and polar $(\Delta \mathbf{H z}, \Delta \leq, \Delta \boldsymbol{u})$. The grid is defined without boundaries. It can be extended over the first and second base points of the reference line.
Example Grid Stakeout

a Reference line
PO Instrument station
P1 Start point
P2 End point
d1 Start distance
d2 Increment
d3 Line offset
Press Grid from the Reference Line - Info screen.
Enter the chainage and the increment of grid points in length and cross direction of the reference line.

Field	Description
Start Chain	Distance from the reference line start point to the beginning grid start point.
Increment	Length of incrementation.
Offset	Offset distance from the reference line.

Next step

Press Cont to proceed to the Reference Grid - Stakeout screen.

Reference Grid Stakeout

The signs for the distance and angle differences are correction values (required minus actual). The arrows indicate the direction to move to get to the stake out point.

Field	Description
Chn	The chainage of the grid stakeout point.
$\mathbf{O f f s}$	Offset increment values. The stake out point is to the right of the refer- ence line.
$\mathbf{\Delta H z}$	Horizontal direction from the measured point to stake out point. Posi- tive if the telescope must be turned clockwise to the stake out point.
$\boldsymbol{\Delta \boldsymbol { U }}$	Horizontal distance from the measured point to stake out point. Posi- tive if the stake out point is further away than the measured point.
$\boldsymbol{\Delta \boldsymbol { u }}$	Height difference from the measured point to the stake out point. Posi- tive if the stake out point is higher than the measured point.
Line	Grid increment values. The stake out point is in the direction from the first to the second reference point.
$\boldsymbol{\Delta \mathbf { L }}$	Longitudinal distance from the measured point to the stake out point. Positive if stake out point is further away than the measured point.
$\boldsymbol{\Delta \mathbf { O }}$	Perpendicular distance from the measured point to the stake out point. Positive if stake out point is to the right of the measured point.

Next step

- Either, press Meas to measure and record.
- Or, press ESC to return to the Enter start chainage of grid! screen and from there, press Back to return to the Reference Line - Info screen.

Description

Access

Segment Definition

The line segmentation subprogram calculates and displays the stake out elements for the points along the line, orthogonal $(\mathbf{\Delta L}, \mathbf{\Delta O}, \boldsymbol{\Delta H})$ and polar $(\Delta \mathbf{H z}, \Delta \underline{\boldsymbol{L}}, \Delta \boldsymbol{\Delta})$. Line Segmentation is limited to the reference line, between the defined start and end points of the line.
Example Line Segmentation Stakeout

Press \downarrow Segment from the Reference Line - Info screen.
Enter either the number of segments, or the length of segments and define how the remaining line length is treated. This misclosure can be placed at the start, at the end, at the start and the end or distributed evenly along the line.

Field	Description
Line Length	Calculated length of the defined reference line.
Segment Length	Length of each segment. Updated automatically if the number of segments is entered.
Segment No.	Number of segments. Updated automatically if the segment length is entered.
Misclosure	Any remaining line length after segment length has been entered.
Distrib.	Method of misclosure distribution. None At start \quadAll of the misclosure will be placed after the last segment. All of the misclosure will be placed before the first segment. The misclosure will be equally distributed between all segments. The misclosure is equally distributed at the start and at the end of the segment line.

Next step

Press Cont to proceed to the Line Segment - Stakeout screen.

Line Segment Stakeout

Messages

Next step

The signs for the distance and angle differences are correction values (required minus actual). The arrows indicate the direction to move to get to the stake out point.

Field	Description		
Segm	Segment number. Includes the misclosure segment, if applicable.		
CumL	Cumulation of the segment lengths. Changes with the current number of segments. Includes the misclosure segment length if applicable.		
$\boldsymbol{\Delta H z}$	Horizontal direction from the measured point to the stake out point. Positive if the telescope must be turned clockwise to the stake out point.		
$\boldsymbol{\Delta} \boldsymbol{U}$	Horizontal distance from the measured point to the stake out point. Positive if the stake out point is further away than the measured point.		
$\boldsymbol{\Delta} \boldsymbol{\Delta \mathbf { L }}$	Height difference from the measured point to the stake out point. Positive if the stake out point is higher than the measured point.		
$\boldsymbol{\Delta \mathbf { L }}$	Longitudinal distance from the measured point to the stake out point. Positive if stake out point is further away than the measured point.		Perpendicular distance from the measured point to the stake out
:---			
point. Positive if stake out point is to the right of the measured point.	,		

The following are important messages or warnings that may appear.

Messages	Description
Baseline too short!	Base line is shorter than 1 cm. Choose base points such that the horizontal separation of both points is at least 1 cm.
Coordinates invalid!	No coordinates or invalid coordinates for a point. Ensure that points used have at least Easting and Northing coordinates.
Recording to inter- face!	Data Output is set to Interface in the Data Settings Menu. To be able to successfully start reference line, Data Output must be set to Internal Memory.

- Either, press Meas to measure and record.
- Or, press ESC to return to the Define Line Segment screen and from there, press Back to return to the Reference Line screen.
- Or, continue selecting ESC to exit the program.

6.6
 Reference Arc
 6.6.1
 Overview

Description

Access

Next step

6.6.2

Description

雨

Access

Reference Arc Measure to start point

The Reference Arc program allows the user to define a reference arc and then complete the following tasks with respect to the arc:

- Line \& offset
- Stakeout (Point, Arc, Chord, Angle)

1. Select Programs from the Main Menu.

2. Complete program pre-settings. Refer to " 5 Programs - Getting Started".

Define the reference arc.

Defining the Reference Arc

The reference arc can be defined by;

- a center point and start point,
- a start point, end point, and radius, or
- by three points.

All points can be either measured, manually entered, or selected from the memory.

Reference arc
PO Instrument station
P1 Start point
P2 End point
P3 Center point
r Radius of arc

All arcs are defined in a clockwise direction and all calculations are made in two dimensions.

Select $\underset{\text { if }}{\text { Ref.Arc and then the method to define the arc by: }}$

- F1 Centre,Start Point
- F2 Start \& End Pt,Radius
- F3 3 Points

Field	Description
Start Pt	Point ID of the start point.
Centre Pt	Point ID of the center point.
Mid Pt	Point ID of the mid point.
End Pt	Point ID of the end point.
Radius	Radius of the arc.

Next step

After defining the reference arc the Reference Arc - Info screen will appear.

Reference Arc - Info	Reference Arc I 0	
	Info	
	Start Pt	444
	(${ }_{\text {Mid }}$	446
	Center Pt	----
	Radius \vdots	8. 089 m
	Arc Length 1: Arc Length 2 :	$\begin{aligned} & \text { 21. } 922 \mathrm{~mm} \\ & \text { 28.902 mm } \end{aligned}$
	New Arc	Cont
	In certain cases, there are two mathematical solutions, as shown in the screenshot. In the subprograms Measure and Stakeout, the appropriate solution can be selected.	
	Next step	
	Select Cont and then Meas Pt or Stake to proceed to a subprogram.	
6.6.3	Measure Line \& Offset	
Description	The Measure Line \mathcal{E} Offset subprogram calculates from measurements or coordinates, longitudinal and orthogonal offsets and height differences of the target point relative to the reference arc. Example reference arc - measure line \mathcal{E} offset	
Access	Press Meas from the Reference Arc - Info screen.	
Measure Line ε Offset	Field \quad Description	
	$\Delta \mathrm{L}$	Calculated distance longitudinal to the reference arc.
	$\Delta \mathrm{O}$	Calculated distance perpendicular from the reference arc.
	ΔH	Calculated height difference relative to the start point of reference arc.
Next step	- Either, press Meas to measure and record. - Or, press \downarrow Back to return to the Reference Arc - Info screen.	

Description

Stake out point

Stake out arc

Stake out chord

Stake out angle

Access

The Stakeout subapplication calculates the difference between a measured point and the calculated point. The Reference Arc program supports four ways to stake out:

- Stake out point
- Stake out chord
- Stake out arc
- Stake out angle

To stake out a point by entering a line and an offset value.

PO Center point of arc
Pl Start point of arc
P2 Measured point
P3 Stake out point
P4 End point of are
a Radius of arc
b+ Line offset
c- Perpendicular offset

To stake out a series of equidistant points along the arc.

PO Center point of arc
Pl Start point of arc
P2 Stake out point
P3 Stake out point
P4 End point of arc
a Radius of arc
b Arc length

To stake out a series of equidistant chords along the arc.

PO Center point of arc
Pl Start point of arc
P2 Stake out point
P3 Stake out point
P4 End point of arc
a Radius of arc
b Chord length
To stake out a series of points along the arc defined by the angle segments from the center point of the arc.

PO Center point of arc
Pl Start point of arc
P2 Stake out point
P3 Stake out point
P4 End point of arc
a Radius of arc
b Angle

1) Press Stake from the Reference Arc - Info screen.
2) Select one of the four methods of stake out available.

Stake out point, arc, chord or angle

Enter the stake out values. Press CentreP to stake the arc centre point.

Field	Description
Line	For stake out arc, chord and angle: Longitudinal offset from the refer- ence arc. This is calculated by the arc length, chord length or angle and the selected misclosure distribution. For stake out point: Longitudinal offset from the reference arc.
Offset	Perpendicular offset from the reference arc.
Distrib.	For stakeout arc: Method of misclosure distribution. If the entered arc length is not an integer of the whole arc, there will be a misclosure. None \quadAll of the misclosure will be added to the last arc-section. Equal \quadThe misclosure will be equally distributed between all sections. All of the misclosure will be added to the first arc-section. Start Arc Start \& End \quadThe misclosure will be added half to the first arc-section and half to the last arc-section. Arc LengthFor stakeout arc: The length of the arc-segment to stake out. Chord Length Angle For stakeout chord: The length of the chord to stake out. points to be staked out. Next step Press Cont to proceed to measurement mode.

Reference Arc Stakeout

The signs for the distance and angle differences are correction values (required minus actual). The arrows indicate the direction to move to get to the stake out point.
To allow a better visibility, for example if the arc is very long and the target close to the line, the scale for x and y can be different in the graphic. If the instrument is far off the arc, the instrument in the graphic is placed in the corner and marked red/grey.

To define the next point to be staked out, type in a point ID, the reflector height, the distance along the arc and an offset.

Next step

- Either, press \downarrow Meas to measure and record.
- Or, press \downarrow Back to return to the Reference Arc - Info screen.
- Or, continue selecting ESC to exit the program.

6.7

Description

Reference Plane is a program used to measure points relative to a reference plane. It can be used for the following tasks:

- Measuring a point to calculate and store the perpendicular offset to the plane.
- Calculating the perpendicular distance from the intersection point to the local Xand Z-axis. The intersection point is the footprint point of the perpendicular vector from the measured point through the defined plane.
- Viewing, storing and staking out the coordinates of the intersection point.

A reference plane is created by measuring three points on a plane. These three points define a local coordinate system:

- The first point is the origin of a local coordinate system.
- The second point defines the direction of the local Z-axis.
- The third point defines the plane.

X X-axis of local coordinate system.
Y Y-axis of local coordinate system.
Z Z-axis of local coordinate system.
P1 First point, origin of local coordinate system.
P2 Second point
P3 Third point
P4 Measured point. This point is probably not located on the plane.
P5 Intersection point of the perpendicular vector from P4 to the defined plane. This point is definitely located on the defined plane.
d+ Perpendicular distance from P4 to the plane.
$\Delta X \quad$ Perpendicular distance from P5 to the local Z-axis.
ΔZ Perpendicular distance from P5 to the local X -axis.

The perpendicular distance to the plane can be positive or negative.

P1 Origin of plane
$X \quad X$-axis of plane
Y Y-axis of plane
Z Z-axis of plane
dl Positive offset
d2 Negative offset

Access

Measure plane and target points

1. Select Programs from the Main Menu.
2. Select Ref.Plane from the Programs Menu.
3. Complete program pre-settings. Refer to " 5 Programs - Getting Started".
4. Once the plane has been defined by three points, the Measure target point! screen appears.
5. Measure and record the target point. The results are displayed in the Reference Plane Result screen.

Reference Plane Result

Reference Plane Result	
Result	
Int. PtID:	441
Offset:	4.779 m
Δ X \vdots	-13.979 m
$\Delta \mathrm{Z} \quad \vdots$	28.748 m
East \vdots	34.832 m
North \vdots	9.664 mm
Height:	21.441 mm
NewTgt	Stake

NewTgt

To record and save the intersection point and to proceed to measure a new target point.

Stake

To display stake out values and a graphic for the intersection point. Refer to "2.7 Graphic Symbols" for an explanation of the graphic symbols.

NewPlan

To define a new reference plane.

Field	Description
Int.PtID	Point ID of the intersection point, the perpendicular projection of the target point on the plane.
Offset	Calculated perpendicular distance between target point and plane (intersection point).
$\boldsymbol{\Delta X}$	Perpendicular distance from the intersection point to the local Z-axis.
$\boldsymbol{\Delta Z}$	Perpendicular distance from the intersection point to the local X-axis.
East	Easting coordinate of the intersection point.
North	Northing coordinate of the intersection point.
Height	Height of the intersection point.

6.8

Tie Distance

Description

Tie distance methods

Polygonal method

PO Instrument station
P1-P4 Target points
d1 Distance from P1-P2
d2 Distance from P2-P3
d3 Distance from P3-P4
$\alpha 1$ Azimuth from P1-P2
$\alpha 2$ Azimuth from P2-P3
$\alpha 3$ Azimuth from P3-P4

Radial method

PO Instrument station
Pl-P4 Target points
d1 Distance from P1-P2
d2 Distance from P1-P3
d3 Distance from P1-P4
$\alpha 1$ Azimuth from P1-P4
$\alpha 2$ Azimuth from P1-P3
$\alpha 3$ Azimuth from P1-P2

1. Select Programs from the Main Menu.

2. Complete program pre-settings. Refer to " 5 Programs - Getting Started".
3. Select F1 Polygonal or $\mathbf{F} \mathbf{2}$ Radial.

Tie distance measurements

Tie Distance Result Polygonal method

After completing the measurements required, the Tie Distance Result screen will appear.

Tie Distance Result				NewP
Result				To calculate an additional line. The program
Point 1			444	
Point 2			446	
Bearing			300.0000 g	NewPt 2
Grade		1. 000 :	$0.000 \mathrm{~h}: \mathrm{v}$	To se
$\Delta \leq$			15. 803 m	new li
Δ			15.803 m 0.000 m	Radial
NewPt 1	\|NewPt	21	Radial	To sw

Field	Description
Bearing	Azimuth between point 1 and point 2.
Grade	Grade between point 1 and point 2.
$\Delta \boldsymbol{a}$	Slope distance between point 1 and point 2.
$\Delta \leq$	Horizontal distance between point 1 and point 2.
$\Delta \Omega \mathbf{u}$	Height difference between point 1 and point 2.

Next step

Press ESC to exit the program.

Description

Access

1. Select Programs from the Main Menu.
2. Select $\underbrace{8}_{8}$ Area\&Vol. from the Programs Menu.
3. Complete program pre-settings. Refer to " 5 Programs - Getting Started".

Area \& DTM Volume

The graphic always shows the area projected onto the reference plane. The points used for defining the reference plane are indicated by:

- 。for measured points.
- $\mathbf{\Delta}$ for manually entered points.
- \square for points defining the reference plane.

Calc

To display and record additional results (perimeter, volume).

1PtBack

To undo measurement or selection of the previous point.
\downarrow Volume
To measure or select points on the breakline. These points are then used to calculate a volume.

\downarrow Def. 3D

To manually define the sloped reference plane by selecting or measuring three points.

The breakline points must be located within the boundary of the defined area.

Area calculation

The 2D and 3D areas are calculated automatically and displayed once three points have been measured or selected. The 3D area is calculated automatically based on the following;

- The system will use the three points which cover the largest area.
- If there are two or more equal largest areas, the system will use the area with the shortest perimeter.
- If the largest areas have equal perimeters, the system will use the area with the last measured point.
A reference plane for the 3D area calculation can be manually defined by selecting Def. 3D.

Graphical representation

2D-Area \& DTMVolume Result

According to DIN18300, the following soil classes have the given swell factors.

Soil class	Description	Swell Factor
1	Topsoil containing unorganic material, as well as humus or organic animals.	$1.10-1.37$
2	Fluent soil types of fluid to semi-fluid consistency.	n/a
3	Easily degradable soil types. Cohesionless to hardly cohesive sands.	$1.06-1.32$
4	Moderately degradable soil types. Mixture of sand, silt and clay.	$1.05-1.45$
5	Hard to degrade soil types. Same soil types as classes 3 and 4, but with a greater ratio of stones bigger than $63 m m ~ a n d ~ b e t w e e n ~ 0.01 ~ m ~$	
	to 0.1 m ${ }^{3}$ in volume.	

Swell factor examples: The values given are approximate only. Values may be different depending on various soil factors.

Soil type	Swell factor	Weight per cubic metre
Silt	$1.15-1.25$	2.1 t
Sand	$1.20-1.40$	$1.5-1.8 \mathrm{t}$
Clay	$1.20-1.50$	2.1 t
Topsoil, humus	1.25	$1.5-1.7 \mathrm{t}$
Sandstone	$1.35-1.60$	2.6 t
Granite	$1.35-1.60$	2.8 t

Next step

- Press NewArea to define a new area.
- Press New BL to define a new breakline area and calculate a new volume.
- Press @BLPt to add a new point to the existing breakline area and calculate a new volume.
- Or, press Quit to exit the program.

6.10

Remote Height

Description

Access

Remote height measurement

Remote Height Result - Aim at remote point!

Next step

Remote Height is a program used to compute points directly above the base prism without a prism at the target point.

$$
\begin{array}{ll}
\text { P0 } & \text { Instrument station } \\
\text { P1 } & \text { Base point } \\
\text { P2 } & \text { Remote point } \\
\text { d1 } & \text { Slope distance } \\
\text { a } & \text { Height difference from P1 to P2 } \\
\alpha & \text { Vertical angle between base point and } \\
& \text { remote point }
\end{array}
$$

1. Select Programs from the Main Menu.
2. Select Remote Ht from the Programs Menu.
3. Complete program pre-settings. Refer to " 5 Programs - Getting Started".

Measure to the base point or press hr=? to determine an unknown target height. Next step
After measuring, the Aim at remote point! screen appears.
Aim the instrument at the inaccessible remote point.

Field	Description
$\Delta \boldsymbol{\Delta}$	Height difference between the base point and the remote point.
Height	Height of the remote point.
East	Calculated Easting coordinate for the remote point.
North	Calculated Northing coordinate for the remote point.
$\boldsymbol{\Delta}$ East	Calculated difference in Easting coordinate between the base point and the remote point.
$\boldsymbol{\Delta N o r t h}$	Calculated difference in Northing coordinate between the base point and the remote point.
$\boldsymbol{\Delta}$ Height	Calculated difference in Height between the base point and the remote point.

- Either, press Cont to save the measurement and record the calculated coordinates of the remote point.
- Or, press Base to enter and measure a new base point.
- Or, press ESC to exit the program.

6.11

COGO

Description

Access

Graphics

6.11 .2

Access

Select Inverse or Traverse from the COGO Main Menu.

Inverse

Traverse

COGO is a program used to perform coordinate geometry calculations such as, coordinates of points, bearings between points and distances between points. The COGO calculation methods are:

- Inverse and Traverse
- Offset
- Intersections
- Extension

1. Select Programs from the Main Menu.
2. Select ${ }_{8}^{2}$ COGO from the Programs Menu.
3. Complete program pre-settings. Refer to " 5 Programs - Getting Started".
4. Select a COGO subprogram from the COGO Main Menu.

In the Results screen, press Stake to access the Stakeout graphic.
Or, in the Results screen, change to the second page for a simple graphic. Refer to "2.7 Graphic Symbols" for a description of the graphic symbols.

Inverse and Traverse

Use the Inverse subprogram to calculate the distance, direction, height difference and grade between two known points.

Known
P1 First known point
P2 Second known point
Unknown
α Direction from P1 to P2
d1 Slope distance between P1 and P2

Use the Traverse subprogram to calculate the position of a new point using the
d2 Horizontal distance between P1 and P2
d3 Height difference between P1 and P2 bearing and the distance from a known point. Offset optional.

Known
Pl Known point
a Direction from P1 to P2
d1 Distance between P1 and P2
d2 Positive offset to the right
d3 Negative offset to the left
Unknown
P2 COGO point without offset
P3 COGO point with positive offset
P4 COGO point with negative offset

Access

Select the desired COGO subapplication from the COGO Main Menu:

- Brg-Brg
- Dst-Dst
- Brg-Dst
- 4 Point

Bearing - Bearing

Bearing - Bearing

Distance - Distance

4 Point

Use the $\mathbf{4}$ Point subprogram to calculate the intersection point of two lines. A line is defined by two points.
To add a shift for the lines, change to page $2 / 2$ for Black\&White display or page Shifts for Color\&Touch display. + indicates a shift to the right. - indicates a shift to the left.

Access

Distance Offset

Set Point by Distance Offset

Plane Offset
Use the Plane Offset subprogram to calculate the coordinates of a new point and its height and offset, in relation to a known plane and offset point.

Known
Pl Point 1 which defines plane
P2 Point 2 which defines plane
P3 Point 3 which defines plane
P4 Offset point
Unknown
P5 COGO (intersection) point
dl Offset

Line - Extension

Select Line - Extension from the COGO Main Menu.
Use the Line - Extension subprogram to calculate the extended point from a known base line.

Known
Pl Baseline start point
P3 Baseline end point
$\Delta L 1, \Delta L 2$ Distance
Unknown
P2, P4 Extended COGO points

Description

Access

Elements

Road 2D is a program used to measure or stake out points relative to a defined element. The element can be a line, curve or spiral. Chainage, incremental stake outs and offsets (left and right) are supported.

PO Center point
Pl Start point of arc
P2 End point of arc
P3 Point to stake
a Anti-clockwise
b Clockwise
c+ Distance from start of arc, following curve
d- Perpendicular offset from arc
r Radius of arc

1. Select Programs from the Main Menu.
2. Select Road 2D from the Programs Menu.
3. Complete program pre-settings. Refer to " 5 Programs - Getting Started".
4. Select the element type:

- Straight
- Curve
- Spiral

A Straight
B Spiral
C Curve
R Radius
a Perpendicular offset left
b Perpendicular offset right
c Increment
d Chainage

Define the element step-by-step

1. Enter, measure or select from memory the start and end points.
2. For curve and spiral elements the Road 2D screen for defining the element appears.

Road 20	5
Config.	
Select method and enter data!	
Method	Rad/Par. 11
Radius	400.000 m
Parameter	600.000 m
Length	900.000 m
Direction	CLk-wise 41
Type	Spir. In 11
Back	Cont

3. For a curve element: - Enter the radius and curve direction.

- Press Cont.

For a spiral element: - Select the method to be used, Rad/Par. or Rad/Len..

